Oxidation of Purine Nucleotides by Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution: pH-Dependence
نویسندگان
چکیده
The photo-oxidation of purine nucleotides adenosine-5'-monophosphate (AMP) and guanosine-5'-monophosphate (GMP) by 3,3',4,4'-benzophenone tetracarboxylic acid (TCBP) has been investigated in aqueous solutions using nanosecond laser flash photolysis (LFP) and time-resolved chemically induced dynamic nuclear polarization (CIDNP). The pH dependences of quenching rate constants and of geminate polarization are measured within a wide range of pH values. As a result, the chemical reactivity of reacting species in different protonation states is determined. In acidic solution (pH < 4.9), the quenching rate constant is close to the diffusion-controlled limit: kq = 1.3 × 10(9) M(-1) s(-1) (GMP), and kq = 1.2 × 10(9) M(-1) s(-1) (AMP), whereas in neutral and basic solutions it is significantly lower: kq = 2.6 × 10(8) M(-1) s(-1) (GMP, 4.9 < pH < 9.4), kq = 3.5 × 10(7) M(-1) s(-1) (GMP, pH > 9.4), kq = 1.0 × 10(8) M(-1) s(-1) (AMP, pH > 6.5). Surprisingly, the strong influence of the protonation state of the phosphoric group on the oxidation of adenosine-5'-monophosphate is revealed: the deprotonation of the AMP phosphoric group (6.5) decreases the quenching rate constant from 5.0 × 10(8) M(-1) s(-1) (4.9 < pH < 6.5) to 1.0 × 10(8) M(-1) s(-1) (pH > 6.5).
منابع مشابه
Kinetics of Photoinduced Electron Transfer between DNA Bases and Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution of Different pH's: Proton-Coupled Electron Transfer?
The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence...
متن کاملPacking of Isophthalate Tetracarboxylic Acids on Au(111): Rows and Disordered Herringbone Structures
Scanning tunnelling microscopy (STM) has been used to investigate the formation of hydrogen-bonded structures of the isophthalate tetracarboxylic acids, biphenyl-3,3',5,5'-tetracarboxylic acid (BPTC), terphenyl-3,3″,5,5″-tetracarboxylic acid (TPTC), and quarterphenyl-3,3‴,5,5‴-tetracarboxylic acid (QPTC), via deposition from solution onto Au(111). STM data reveal that ordered structures can be ...
متن کاملKinetics of the Oxidation of Thymine and Thymidine by Triplet 2,2′-Dipyridyl in Aqueous Solutions at Different pH Values
The photo-oxidation of the nucleobase, thymine (Thy), and nucleoside, thymidine (dThy), by dipyridyl (DP) has been investigated in aqueous solution using time-resolved laser flash photolysis. The pH dependence of the oxidation rate constants is measured within a large pH scale. As a consequence, the chemical reactivity of the reactants existing in solution at a certain range of pH is predicted....
متن کاملVoltammetric determination of all DNA nucleotides.
The voltammetric oxidation of all deoxyribonucleic acid (DNA) monophosphate nucleotides is investigated for the first time over a wide pH range by differential pulse voltammetry with a glassy carbon electrode. Experimental conditions such as the electrode size, supporting electrolyte composition, and pH were optimized to obtain the best peak potential separation and higher currents. This enable...
متن کاملpH-Dependence of the Aqueous Phase Room Temperature Brønsted Acid-Catalyzed Chemoselective Oxidation of Sulfides with H₂O₂.
A pH-dependence of the Brønsted acid-catalyzed oxidation of sulfides to the corresponding sulfoxides with H₂O₂ is reported for the first time based on our systematic investigation of the catalytic performance of a series of Brønsted acids. For all of the Brønsted acids investigated, the catalytic performances do not depend on the catalyst loading (mol ratio of Brønsted acid to substrate), but r...
متن کامل